Documentation Tangram Experiment

Content

Documentation Tangram EXPErimMENT s s s s s s s s as 1
I (o T=] o [=T) Tl T o) f o 1SS 2
2 Experiment from the participant Perspective.........eeeei i 3
2.1 Start Of the EXPErIMENT ...coc e e e e et e e e st e e e s abe e e e eareeeeenanees 3
2.2 IMIAIN TASK- ettt ettt sttt st b et she e e e reenree 5
2.3 Split aNd MErgE OPLION coee ettt e e ecree e e e e e s et are e e e e e e e s nnrraeeeeaeeeennnnsnens 6
2.4 Debriefing / CROICE TaSK.....cuiiereeeeee et eetee ettt et eetee e etee e et e et e e e s e e ebeeeeasesebeeeesseesnseeenneeeenrens 8
2.5 Shape Completion / MiN@SWEEPET TASK.......ccvieeireeiiieeereeeeteeeeeeeeereeeeteeeerreeeereeeereeeeareseneeeenreas 9
2.6 DIraWiNg TaSK weeeeecieiee ettt te e et e e e e e e e et e e e e e eabe e e e ebta e e e e areeeeeatae e e ereeeeenanres 10
2.7 ComMMENT SECHION ..eiiiiiiiiiiiiii e 12

S Oo Y0} T=qW T =[] o WU USPUOt 13
L o o [T PP PSPPSRSO PPROPRTOP 15
A1 OVEIVIEW..oiiiiiiiiiiiiiiiciiiiie sttt ettt s e e s b s e s s eb s e e e sabb e e e s saba e e e sasbseessnbasessans 15
4.2 FrONtENA COU ...ccuuiiiiiiiieiieei ettt ettt st st sttt e she e st s st e e et e sreesaeesaresare e 16
4.3 BACKENT COUE ..ottt sttt ettt e s ettt e et e be e sbeesmeesaneenre e e 21

5 Database and Loading StMUIi.........coii oot ree e e et e e e e e e s e reneae s 26
6 SV INFrASTIUCTUIE ...ttt s b e e sbe e s st e e s are e s neessaeeesareeaas 29
TaT = | o e [N TSRS 29
Install and coNfigUIE APACREciiciiiee e e e e e be e e e eanr e e e e e nes 29
CoNfig fOr the WEDSEIVE .. .cci e e e et e e e e te e e s e arae e e enrees 30

Lo TS] =1 | = o SRR 31
INSEAIT IMIYSQL....eeeeieiieee ettt e e et e e e st e e e saabtee s e sbeeeeanbaeesesaseeaessanbeesssnsseeessnees 32
Connecting Database to NOdeJS BackeNnd:..........cceiiiuieiiiiiiie ettt e etee e s 32

1 Experiment Description

2 Experiment from the participant perspective

2.1 Start of the experiment

The online experiment consists of multiple sub-pages and different tasks which are sequentially
displayed to the participant. A usually consists of multiple trials and if all trials are finished, the
application will load the next task or the end of the experiment.

Not every experiment consists of all the different tasks and can also differ in the number of trials for
each task. Which tasks that are part of an experiment, the number of trials and other options can be
set in a separate configuration file. For further information see Chapter 3.

The online experiments are usually done via Prolific. If a participant starts the experiment, he or she
will be redirected to the website and the welcome page will be shown:

Thanks for accepting our HIT

Please pay attention during the full exent of the experiment. The provided time should be more than sufficient and the HITs submitted
late will be rejected.

Do not refresh this tab at any point during the experiment, as you will not be able to reaccess it.
A short quiz will follow the instruction pages. Failing a quiz more than 3 times will result in a HIT rejection.

Before starting the experiment, please disable any color-correcting software (e.g. Flux or Night-shift), as the experiment partially relies on
proper color perception.

After clicking on the Proceed Button, the consent form to participate is shown which the participant
can either accept or decline.

Consent to Participate in the Learning and Cognitive
Control Study

This is a psychology experiment being conducted by Dr. Peter Dayan, director of the Max Planck Institute for Biological Cybernetics, and
the members of his lab. In order to consent to participate, you MUST meet the following criteria:

« 18 years of age or older.

« Fluent speaker of English.

« Have not previ y particip in this experi
« Have normal color vision.

This study is designed to look at how people learn how to make decisions to accomplish their goals. In this task, you will be asked to
make choices, play games, and answer questions related to those games.

Your participation in this research is voluntary. You may refrain from answering any questions that make you uncomfortable and may
withdraw your participation at any time without penalty by exiting this task and alerting the experimenter. You may choose not to
complete certain parts of the task or answer certain questions. You may contact us at the address provided below if you have additional
questions or concerns.

Other than monetary compensation, participating in this study will provide no direct benefits to you. But we hope that this research will
benefit society at large by contributing towards establishing a scientific foundation for improving people’s leaming and cognitive control
abilities.

Your online username may be connected to your individual responses, but we will not be asking for any additional personally identifying
information, and we will handle responses as confidentially as possible. We cannot however guarantee the confidentiality of information
transmitted over the Internet. We will be keeping de-identified data collected as part of this experiment indefinitely. Data used in scientific
publications will remain completely anonymous.

If you have any questions about the study, feel free to contact our lab. Dr. Dayan and his lab members can be reached at
kyblab.tuebingen@gmail.com.

By selecting the “consent” option below, | acknowledge that | am 18 or older, that | am a fluent speaker of English, that | have read this
consent form, and that | agree to take part in the research.

When declining the consent, an information text is shown, given the opportunity to return to the
consent page.

Please return the HIT

Please return the HIT if you are not comfortable with our experiment and data policies.

If you clicked 'disagree' by mistake, please click here to go back to the consent form.

When accepting the conditions, the participant is redirected to the instruction page, where basic
information about the task, time limit and payment are provided:

Instructions

We are interested in how people learn to construct shapes (silhouettes). You will leamn how to build shapes similarly to playing Lego/Tetris/Tangram. You vill see one black shape on the
screen at a time. Your task is to find the building blocks that make up the shapes, e.q.:

Shape Building Blocks

ko
4

— r

4

We will show you 150 of these shapes. Each time, you will see the shape and 6 candidate building blocks. The building blocks won't change - you wiill always receive the same basic
building blocks. The position of the building blocks on the screen will change randomly. Every shape consists of 4 building blocks. Your task is to select the correct building blocks as
fast as possible by clicking on them using your computer mouse. A trial will look like this:

i1apl

If you have selected a building block and would like to unselect it, you can click on the building block again. Once you are done with your selection click ‘Enter’. You will then receive
feedback: if your selection is correct, the background will flash green. If your selection is incorrect, the background will flash red. For the first 5 shapes, the correct solution will be shown
for 4 seconds to familiarise you with the task.

When you think about the construction of the shapes, you do not have to worry about gravity or how stable the shape will be. Just imagine you are moving the building blocks around on
a table such that they cannot fall. Also, you cannot rotate the building blocks.

You have 20 seconds to find the correct solution but you should try to be as quick as possible. Your base payment for participation will be £7. You can also make up to £6 of bonus
payment, depending on your performance. If you get 100% correct, you will receive a bonus of £6. You can receive a £3 bonus in the main task we just explained to you, and £3 in total
in two other tasks. We will explain the other tasks before they start.

This means that every answer you give will count towards your overall payment, so you should try to give as many correct answers as possible. This bonus payment means that every
correct answer in any task viill give you a bonus of 3 Pence

Note: if your internet connection is a bit slow, it may sometimes take a few moments for a shape to load. Please be a bit patient in that case, after a few moments the shape should be
on the screen. You should also do the experiment in full screen mode.

Good luck, and thank you for participating

On the next page the participant has to fill out a multiple-choice quiz to make sure he or she read the
instructions carefully.

Entry Quiz

How many building blocks does every shape contain?
O 4 Building blocks

O There is no fixed size

O 2 Building blocks

How much do you earn for every correct solution?
O That depends on how fast you are

O 5 Pence

O 3 Pence

Which of the following statements is true?

O In every trial you can choose between the same 6 building blocks, and you have unlimited time to do so.

O In every trial you can choose between a random number of building blocks, and you have up to 20 seconds to do so.
O In every trial you can choose between the same 6 building blocks, and you have up to 20 seconds to do so.

After submitting the answers of the quiz are evaluated. Only if all answers are correct, the participant
may proceed in the experiment. The participant can fail the quiz up to three times (the questions and
possible answers stay the same). After failing for a third time, the user is excluded from the
experiment.

(The correct answers for the current quiz as shown in the screenshot above are 1,3,3)

Up to this point the displayed pages will stay the same for every experiment. In the following, all the
different tasks that can be part of the experiment are presented. Note that the presence and order of
certain tasks can change and it is also possible to repeat certain patterns of tasks multiple times
during the experiment (For further information see Chapter 3).

2.2 Main Task

This is the main task of the experiment and is usually part of every experiment configuration.

Trial 1 /150

Time: 17

In every trial of the task, a silhouette a certain silhouette is shown. The shape consist of a certain
number (here four) of primitive building blocks. There are six different building blocks. The possible
building blocks are displayed in the green buttons below the silhouette.

The participant has to click on the building blocks that are contained in the silhouette and submit the
selection by pressing enter. Note that the outline of the different building blocks (displayed in
different grey colors in the screenshot above) are only displayed in the first 5 trials of the experiment
and only for a few seconds to demonstrate how the task works.

Every trial has to be solved in a certain time limit. How many seconds are left for the current trial is
displayed in the upper left corner. The current trial and the number of total trials of this task are
displayed in the top right-hand corner.

If the participant clicks the Enter button, the selection is evaluated and a the display flashes either in
green or in red for a short time depending on whether the selection was correct or not (i.e. the
correct four building blocks that are contained in the silhouette were clicked before hitting enter).

If the time limit is exceed, the trial is marked as failed and the next trial is loaded.

2.3 Split and Merge Option

There is an additional option in the main task that can be made available for the user by choosing the
according option in the configuration page (See Chapter 3). If this option is available, the participant
can combine two building blocks and form a new button that can be used to select the two primitive
building blocks at once.

If the split merge option is active, an additional introduction page is shown before the main task
starts:

Merging building blocks

During the task, you can merge any two building blocks together to form a combined
block that you will be able to use on all subsequent trials. You can use combined building
blocks to increase the number of credits you gain from a task.

To do this, you can press the Combine button, which will open the merge menu. Here
you can select exactly two of the six available building blocks to merge them together.

The block you selected first will appear in the center of the grid. The second selected
block will be attached to your mouse pointer and you can place it at any location in the
grid by moving the pointer and clicking at the desired location

The two blocks can not overlap and you are not allowed to select more than two building
blocks or already combined blocks.

You can build up to 6 combined building blocks. If you want to create new combined
blocks when you already have 6, you have to remove an exisitng one using the Remove
button in the merge menu.

The time you spend in the merge menu will not affect the time limit for the current task.
Merging buttons is for free and will not cost you any credits.

If you solve a trial correctly, the amount of credits you earn will depend on the number of
blocks you needed, counting simple and combined blocks equally.

That is:

« Using 4 actions,you will earn a reward of 1 credit.
« Using 3 actions,you will earn a reward of 2 credits.
« Using 2 actions,you will earn a reward of 4 credits.

IM

In the main task, an additional “combine” Button is available.

Pressing the combine button will open a new window, where the participant can click on two

building blocks. The first block will be displayed in the center of the grid, the second block can be
placed anywhere in the grid by clicking on the according cell.

rajaje]=1)
—_—)
e)

After pressing save, the new chunk will be available in addition to the buttons in the main task:

Participant can build up to six new combined building blocks. There is no time limit while in the split
merge menu and the timer for the current main task trial will be paused. The combined button can

be used in the same way as the other buttons but will count as two selections. The selection is only

correct, if both primitive blocks appear in the silhouette in the exact same relative position.

When using the split merge function, the participants can earn credits. The current credit score is
displayed in the top right-hand corner. As a motivation to use the split-merge feature the number of
credits that can be earned in one trial depends on how many buttons the participate used for
selecting the blocks. A task can be solved by using four, three or only two buttons and the less button
clicks are needed, the more credits can be earned.

Trial 11 /150
Credits: 0

Time: 18

Is the selection wrong or the time limit reached, the participate will not gain any credits for this trial.

2.4 Debriefing / Choice Task
Instruction page for this task:

Choice Task 1

Well donel Now you will do a different task. In every trial, you will see two shapes, and you should click on the one that
you think is more likely to come up in the construction task. These could either be full shapes or just parts of those.

Remember that every correct answer will result in @ bonus payment. Your task is to determine which of the two shapes
occurs more often in the construction task.

Importantly, most but not all trials have a correct solution. Only the ones that have a correct solution will count towards
your bonus payment. You will not receive feedback for your choices.

In this task the participant is shown two different silhouettes (Option 1 and Option 2). By clicking in
one of the images the participant has to decide which of the shapes is more likely to occur in the
main task.

Bonus Trial1/5

Please select which of the two shapes (left or right) you think is more likely to occur in
the construction task.

Option 1 Option 2

There is no time limit and also no feedback about whether the answer was wrong or right. In the top
right-hand corner the current trial and the number of total trials of this tasks is displayed.

2.5 Shape Completion / Minesweeper Task
Instruction page for this task:

Shape Completion 1

Great. We would like to ask you to do one more task before you continue with the construction task. You will see a part of
a shape that consists of 3 building blocks. You can think of this as one building block being occluded (hidden), and your
task is to complete this shape. Based on your previous experience, you can infer the most likely location and identity of
the occluded building block.

You can complete the shape by first clicking on the building block you want to move, and then moving your cursor across
the grid. You can place the building block by clicking on a location on the grid. Once you have placed the building block
you cannot remove it any more.

Remember that also here every correct answer will result in a bonus payment. Whenever you complete a shape
correctly, the background will flash green.

Sometimes finding the correct missing building block may be easier or harder - if you're unsure, just try to find a building
block and place it at a location that you think makes sense. The building block you place has to be connected to the
shape in the grid, and can't overlap with the shape.

In this task again a silhouette is shown to the participant. This silhouette only contains of three
instead of four building block. The participant has to “complete” the silhouette by placing one of the
six building blocks at a certain location in the grid.

Completion Trial 1/5

Please complete the shape by clicking on the building block you want to move, and then
moving your cursor across the grid. You can place the building block by clicking on a
location on the grid.

When clicking at a building block, the shape of this building block is attached to the cursor. By
hovering over the cells in the grid, the participant can choose a location for the block. By clicking a
the currently selected cell, the building block is placed and the answers is committed.

If the correct building block was placed to the correct position a positive feedback is shown by
flashing the display green. Negative feedback on wrong selections is not provided.

Again ,there is no time limit to this task. The current trial and the total number of trials for this task is
shown in the top right-hand corner.

2.6 Drawing Task
Instruction page for this task:

Drawing Task 1

Thank you! We would like to ask you to do two last brief tasks. On the next screen, you will see four empty grids. Please
draw four shapes (one per grid) that you think occurred many times in the construction task. You can either draw full
shapes or just characteristic parts that you think were likely to occur.

You can draw shapes simply by clicking on a tile in a grid.

Note: only draw shapes that are combinations of building blocks, not single building blocks themselves. That means that
when you draw something it needs to be larger than 3 grid elements.

After this task the experiment will be finished, and you will receive payment soon. Thank you very much for participating!

In this task, four empty grids are displayed. The participant is told to draw certain shapes that are
likely to occur in the main task.

|

By hovering over a cell in the grid with the cursor, the selected cell is highlighted in grey. By clicking
at this grid cell, the according cell is filled out with black color. When the participant finished the
drawings they are committed by pressing on the submit task. The submit button is active all the time,
so the participant can also decide to draw less than 4 shapes or no shape at all.

There is no time limit for this task and there are no multiple trials.

There is a second part of the drawing task following right after the first task

Instruction page for this task:

Drawing Task 2

Thank you! Next, you will see a final drawing screen containing two grids.

In the construction task, you may have noticed two characteristic combinations of two building blocks, forming
‘perceptual chunks’ that often form subparts of a large shape. We would like to ask you to draw these two perceptual
chunks, again by clicking on individual grid elements.

Since we are asking you to draw characteristic combinations of two building blocks, your drawings need to have an exact
size of 6 tiles per grid. It doesn't matter where in the grid you draw them. If you are unsure you can draw a combination
of two building blocks that seems most likely to you.

. Here, two empty grids are displayed. This the instead of drawing any kind of shape the user is
explicitly asked to draw a combination of two building blocks in each grid (So in each grid the

participant should fill in exactly 6 cells).

The drawing works exactly the same as for the first drawing task. Again, there is no time limit and no
repeating trials.

2.7 Comment Section

In the very last part of the experiment, the participant can leave a comment or feedback about the
experiment:

Comment Section

If you have any comment or feedback about the experiment, please write us a message in the field below.

There is no time limit and no limitations on the length of the comment. The participant can also
continue without writing any comment at all. Clicking on the button will end the experiment and the
participate will be redirected back to prolific. The url to which the participant contains a certain

parameter, proving that the experiment was finished successfully. This is important for doing the
payment later.

3 Configuration

The general procedure and other aspects of the experiment can be customized via a configuration
page. The page is available under:

http://[URL TO THE EXPERIMENT PAGE]/config.html

depending on where the website is deployed (or if it run locally), fill in the according route to the
experiment page.

It is possible to run multiple experiments with different configurations at the time. To do this, it is
possible to create, load and modify separate configuration files independently from each other and
later choose which of them should be used in a certain session by setting a parameter in the
experiment URL accordingly.

Ther first section of the configuration page provides functions to manage different configuration
files.

Load

Create

To load an existing configuration, select it in the drop-down menu and press “Load”. All the input-
fields will be filled in with the current values of this configuration, and all changes will overwrite the
values in the selected configuration file.

To create a new configuration file, choose a name which is not already in use and press “Create”. All
input-fields will be filled with default values and you can set them based on the desired requirements
for the new experiment.

In the second section, general settings for the experiment can be set:

HFFFFFF

Hierarchies

StimSet_0

For changing the background color of the website, type in any color as a HEX Code. The time limit for
the main task can be set in seconds. The fields “Directory” and “Stimuli Set” are used to define which
stimuli should be used in the experiment. For further information about how stimuli are loaded see

Chapter 5.

By selecting or deselecting the two checkboxes in bottom, you can toggle whether the “Split and
Merge function” and the Drawing Task should be used in the experiment. For details about those
options see Chapter 2.3 and Chapter 2.6.

In the last section of the page, you can define which tasks should be used in the experiment and how
many trials each task will have.

The block of input fields, shown in the screenshot above, appears three times on the configuration
page. This is because all the tasks can be repeated in up to three experiment parts while every part
can be configured differently. By typing a 0 in one of the input fields, this task will be skipped in the
current part. Otherwise, the task will be used contain the number of trials that is specified in the
field. If all tasks in a part have the entry 0 this part is skipped entirely. With that, it is possible to
create arbitrary combinations of tasks which are repeating, occurring once, or are left out
completely.

The checkbox at the end of each part defines whether the building block buttons in the main task
should be shuffled or always are displayed in the same order.

Make sure to always check which configuration file you edit and that you have to load a config file
before you are able to modify it. After pressing the “Submit” button at the very end of the page the
selected configuration file is overwritten (or created in the case of a new one) with the current values
of the input fields. The changes are active after the next reload of the experiment page.

To define which configuration should be used you can set a directly in the parameter in the URL:

http://[URL TO THE EXPERIMENT PAGE]/?CONFIG=[configname]

And replacing [configname] with the name of the config file that should be used for this session.

4 Code

4.1 Overview

Repository URL: https://gitlab.tuebingen.mpg.de/pschwartenbeck/tangram

URL to experiment page: http://134.76.24.67/

URL to config page: http://134.76.24.67/config.html|

Database: mysql on port 3306 (Database: experiment User: root pw: tangram)

This code project is a web-application, running on an apache webserver.
For the frontend, the following programming languages and frameworks are used:

- HTML

- CSS

- JavaScript
- Bootstrap
JQuery

For the backend, the following programming languages and frameworks are used:

- NodelS

- NestlS

- JavaScript
- TypeScript
- saL

For helper scripts, result evaluation and data management, the following programming languages
and frameworks are used:

- Python

4.2 Frontend Code

Structure and Styling of the Website are contained in a single html and css file each.

general.css
Contains all css styles used in the entire application

index.html

Contains the html structure of all Ul components and pages that are shown during the experiment.
Transitions between different tasks (see Chapter 2) are done by dynamically showing and hiding
<div> containers defined in the index.html file. Some Ul Elements are not described in the index.html
but are created dynamically using JavaScript (jQuery) code. Examples for this are the building block
buttons, the grid and the silhouettes in the main task.

config.html
Contains all html structure for the configuration page (See Chapter 3).

Vv frontend
V' Css
bootstrap.css

general.css

> Js
> Pics

<> config.html

index.html

The subfolder js contains multiple JavaScript files that handle the entire frontend behavior of the
website (Handle user inputs like button clicks, transition between experiment parts, sending http
requests to the backend to load and save data. In the following the most important Javascript files
are listed with a short description of their functionality:

Vs
> Pics
JS APIHandler js
JS AppController.js
JS AssociationTask.js
JS AssociationTask2.js
JS AssociationTaskDebriefing.js
JS bootstrap.js
JS configController.js
JS DebriefTask.js

JS DrawingTask.js

JS DynamicHtmljs

JS jquery-1.11.3,js

JS jquery-ui-1.12.1.min.js
JS MainTaskjs

JS MinesweeperTask.js
JS SilhouetteUtils.js

JS SplitMerge.js

JS utilsjs

AppController.js
This file handles the main application flow including initialization, page transition and click listeners.

The init() function is called in the very beginning and handle all functionalities that have to run when
the page is loaded. Here for example the configuration that should be used for the current session is
loaded. This configuration affects the appearance of the website as well as the general procedure
(which tasks are active, how many trials etc. See Chapter 3).

Some functions handle the time limit in the main task using a timer object that is started, paused and
resumed depending on the task logic.

The function next() handles the main flow of the experiment and is responsible for transitioning
between different tasks and different trials in a task. The function consists of a big switch-case block
based on the state variable and execute certain code based on the current state (what is the current
task) and the configuration (how many trials are left, what is the next task). The next() function is
called after every trial in a task and either load the next trial (if the maximum number of trials is not
reached), transition to the next task (if the maximum number of trials is reached), transition to the
next experiment part (if the last task of the current part is over, See Chapter 3) or ending the
experiment if the (last task is over).

The rest of the file contains assignments of click and hover listeners for different Ul components. The
listeners are either directly defined and enable or disable certain Ul elements or another function is
called. Those functions can be located in other JavaScript files.

function set_button_click listeners(){

$("#welcome__button").click(function(){
$(".welcome").slideUp();
$(".consent").slideDown();

b

$("#consent__button__disagree").click(function(){
$(".consent").slideUp();
$(".return-hit").slideDown();

b

$("#combine button").click(function() {
on_combine_button_clicked(session)

})s

$("#save_split_merge_button").click(function() {
on_save _split merge button clicked(session)

s

APIHandler.js

This file contains several methods handling the entire communication with the backend (API). The
URL for all API calls is saved in a constant and used in every function. Based on if you run the
application on the server or locally on your machine, you might change this URL accordingly.

const API URL ="http://134.76.24.67/node"

According to what data should be read or written, different routes are called. For example to get all
sessions that are saved to the database, a GET request is sent to the URL:
http://134.76.24.67/node/session

You can also call this URL in any browser and check the response there.

Function that load data from the server usually send a GET Request to the server and then parse the
result in any way it is needed by the frontend application. When writing to the server, a JSON object
is created, containing key-value pairs with all necessary fields which is then sent in a POST request.

xhr.open("POST", API_URL+"/trial");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.send(JSON.stringify({

session: session,

silhouette: silhouette,

timestamp: timestamp,

reward: reward,

experiment_part: experiment_part,
trial_type : trial_type,
silhouette_str: silhouette_str

DynamicHtml.js

This file contains all methods to dynamically build or modify Ul elements. The functions build html
elements and append them somewhere in the index.html file or manipulate certain properties of
existing elements using jQuery commands.

For examples all grids and the silhouette rendering in the grids is done by functions in this file.

am {number} grid_max

on build_grid_main_task(grid_max){
for(var i =0; i<grid _max; i++){
for(var j=0; j<grid_max; j++
$('#grid').append(
$('<div>").prop(

[

_'+3,

id: "grid_"+i+
innerHTML: "',

className: ‘grid_cell’

configController.js

This file handles all functionalities for the config page. It is the only JavaScript file in the folder which
is not connected to the index.html file but to the config.html file. The functions in this file are
responsible for creating, loading and saving certain configuration files, reading out values of the input
fields and setting values to the input fields.

utils.js and SilhouetteUrtils.js

Those two files contain general functionalities that are used in different parts of the application.
SilhouetteUtils especially contains methods to display building blocks and whole silhouettes in the
grids.

MainTask.js, DrawingTask.js, ...

All the other JavaScript files contain the code to handle the different tasks of the experiment. Every
single task has its own JavaScript file that handles all the functionalities that is used by this file. Only
transitions between tasks and trials are not handled by those files but are handled in the
AppController.js file. Since all files are connected to the index.html file, the methods declared in one
JavaScript file can be called from any other file, that was loaded after it. Whenever a new JavaScript
file is created, it has to linked to the index.html file as well (make sure to load it before all the files
that use functions from it).

See the loading order in the index.html file:

ipt type="text/javascript" src="js/utils.js" script

t type="text/javascript" src="js/SilhouetteUtils.js

ot type="text/javascript"” src="js/APIHandler.js"
ot type="text/javascript" src="js/DynamicHtml.js"
ipt type="text/javascript"” src="js/SplitMerge.js"
ot type="text/javascript" src="js/MainTask.js"
pt type="text/javascript" src="js/DebriefTask.js" SC
ot type="text/javascript"” src="js/MinesweeperTask.js"
t type="text/javascript" src="js/DrawingTask.js" script
t type="text/javascript" src="js/AssociationTask.js"
pt type="text/javascript"” src="js/AssociationTaskDebriefing.js"
pt type="text/javascript" src="js/AssociationTask2.js"
ot type="text/javascript" src="js/AppController.js"

4.3 Backend Code

The backend, i.e. the application that runs on the server, is build in NodeJs. On top, the framework
NestlJs is used which is a NodelS framework for developing lightweighted server applications to
handle API calls.

To start the backend application locally on your computer (or any server), install Nodels, then
navigate to tangram/backend with any command shell and run

npm install

to install all necessary packages / libraries. After the installation is done, you can start the
application by executing the command

npm start

When running the app on the server you have to make sure, the process is not stopped, when you
close the console or log out, therefore, for running the app on the server, navigate to
tangram/backend and run the following command.

forever start dist/main.js

You may have to install the forever package first. To stop the running processing you can use:
forever stop (index)

The index of the application can be found out by running

forever list

but as long as you do not have started other apps using forever, it should always be 0.

To properly run the backend application, you also need a mysql database contain all necessary
tables. For further information see Chapter 5. By default the application will listen to the port 3000
and this is also the case for the currently running experiment backend on the server. The webserver
is configurated such that all http requests incoming at the route http://134.76.24.67/node will be
redirected to localhost:3000 and therefore handled by the running Nodels application. For further
information see Chapter 6.

The backend folder is structured as follows:

Vv backend

> config

The config folder contains all configuration json files that were created via the config page. When
adding a new config or updating an old one, a new json file is created or an existing one is
overwritten.

The src folder contains all the code handling the incoming HTTP request and the connection to the
database.

The .env file contains login credentials and other information about the database connection.
Change those entries accordingly when deploying the application locally or on another server.

Lets have a look at the structure of the actual backend code contained in the src folder:

V' SIC

actions

association
association_debriefing
config

debriefing
debriefing_action
drawing
minesweeper
minesweeper_action
sessions

silhouettes
split_merge

trials

>
>
>
>
>
>
>
>
>
>
>
>
>
v

utils

database.service.ts
S app.controller.spec.ts
5 app.module.ts

5 main.ts

As you can see, the code to handle requests for different functionalities or tasks of the website is
divided into subfolders. Every subfolder contains one controller file which listen for requests on a
certain route and one or multiple dto (data transfer object) files which describe the structure of all
objects that are received or sent via http.

v actions

5 action_dto.ts

action.controller.ts

To learn more about the structure of a NestJS application, check their documentation.

The dto files are simple typescript classes that just contain all attributes of a certain object. For
example, whenever a user select a button in the main task, an action object is sent to the backend
which have the following structure:

export class ActionDTO {
trial: number;

building_block: String;

reaction_time: number;
selected: boolean;

Just make sure that every attribute has the correct datatype and the same name as the attribute in
the json file that is sent from the frontend application (This is important to map the attributes from
the json object to the typescript object).

A controller file usually looks like this:

@Controller("action")
ss ActionController {
r(private readonly dbService: DatabaseService)

getAllActions(){
return await this.dbService.getAllActions();

@Post()
saveRecord(@Body() action: ActionDTO){

this.dbService.saveAction(action);

The annotation above the class definition sets the route on which this controller should listen. For
example the controller in the screenshot above handles all incoming HTTP requests to the route

http://134.76.24.67/node/action

and only them. Inside the class we define a function for every request type we want to cover which is
marked by the annotations above the function heads (In this case @Get and @Post). In this example
the controller will only accept GET and POST requests from the frontend.

Inside those function we can define the behavior of the backend when a certain API call was
received.

Almost all files in the src folder have the exact same structure and all the controllers are working in
the same way, only handling the requests to a specific route (most of the times one route
corresponds to one task of the experiment)

The only exception is the file database.service.ts located under src/utils. This file is responsible for
reading from and writing to the database. The function connectToDatabase tries to create a
connection to a mysql database using all the settings specified in the .env file.

c connectToDatabase()1

8

r mysql = require('mysqgl');
= mysql.createConnection({
this.configService.get<string>('DB_HOST'),
this.configService.get<string>('DB_PORT'),

this.configService.get<string>('DB_USER"),
password: this.configService.get<string>('DB_PASSWORD'),
database: this.configService.get<string>('DB_DATABASE')
})s
console.log("connecting to database..."

await this.con.connect();
console.log("connected");

The function is called as soon as the application starts and uses the same database connection until
the application is shut down or the database is no available anymore.

All other functions in the file handle a certain database action like reading from a certain table or
creating a new entry. They all look something like this:

sync getAllActions(){
if (!this.con
await this.connectToDatabase();

var sql = "SELECT * FROM action’
var actions = await this.selectQuery(sql);

return actions;

If there is currently no database connection, the connectToDatabase() method is called. If the
connection is established a certain SQL command is executed and the result is returned.

There is basically not more functionality to the backend than what we saw so far. In all cases a
certain HTTP request is sent to a specific route and handled by the according controller. POST
requests usually contain a json object as payload which is parsed to a typescript object using a dto
class. In all cases the controller then calls a certain function of the database.service to either read
from the database, create a new record or modify an existing one.

The main.ts file is the called to start the application. Here you can change the port (currently 3000)
on which the application will accept incoming requests.

function bootstrap() {
const app = await NestFactory.create(AppModule);

app.enableCors();

\

await app.listen(300);

}
bootstrap();

In the app.module.ts file every controller or service that is used in the application must be
registered:

@Module({
imports: [ConfigModule.forRoot({isGlobal: true})],
controllers: [ActionController, TrialController, ConfigController, SilhouetteController, SessionController,

providers: [DatabaseService],
1
export class AppModule {}

Whenever you create a new controller or service, you have to make sure to add the class to the
according list in this file! Otherwise, a controller will not listen to the route you specified and a
service will not be available to any controllers.

Please Note:

Whenever you make changes to the backend code, you have to restart the application to make the
modified code available!

5 Database and Loading Stimuli

To save the experiment data we are using a mysql database. In order to run the backend application
without errors and to properly save and load all data that is produced during the experiment, you
have to make sure that:

1) The mysqgl server is running
2) The backend application can connect to the database (for this see Chapter 4.3 and Chapter 6)
3) There exist a database contain the correct tables with the correct structure.

To ensure point 3) there is a dump file in the code repository called db_dump_tables.sql. The file
does not contain any data but the sql code to create a database and all the necessary tables.

Currently the following tables are used by the application:

v experiment
I action
™ association
™ association_debriefing
I building_block
™ chunk
I™ debriefing_action
I debriefing_left
I debriefing_right
I drawing_action
™ minesweeper_action
I minesweeper_silhouette

I session

I silhouette

I trial

Most of the tables and their columns are self-explanatory but let’s look at some of the tables that are
important to understand:

Session

Every time the website is loaded, a new session is created. The session will stay the same until the
experiment is over or the website is closed. Therefore it uniquely identifies one participant doing one
experiment.

1 session_id INT

2 participant_id TEXT

3 code_version INT

4 exit_quiz MEDIUMTEXT
5 comment MEDIUMTEXT
6 split_merge INT

7 credits INT

Every session has an incrementing session id as its primary key. Additionally a participant id is saved.
This id depends on how the participant was redirected to the website. Until now, the experiment was
only performed via prolific. When a participant is redirected to the experiment URL a parameter is
appended to the URL containing a unique participant id. This id is saved to the database and is very
important to identify the participant later and manage payment. When the experiment is over, the
participant is redirected back to prolific. This redirection also have to contain the participant id to
give the information back to prolific, that the participant finished the experiment successfully.

The columns code_version and exit_quiz are currently not used.

If a participant decides to leave a comment after the experiment it is saved as a string to comment
column.

When using the split-merge function (see chapter 2.3) a True-flag is saved to the split_merge column
and in this case, also the amount of credits a participant gained is saved.

To handle the main task, several tables are required:

Trial
The main task consists of multiple trial and in every trial a different silhouette is shown.

1 trial_id INT

2 session_id INT

3 silhouette_id TEXT

4 time_stamp BIGINT
5 reward FLOAT
6 timeout INT

7 experiment_part INT

8 trial_type INT

9 silhouette TEXT

For every trial a record is saved, containing the session_id and the id of the displayed silhouette. Also
the time the participant needed to do the trial and the reward (1 for success 0 for fail) is saved. If the
trial ended in a timeout this is saved as a True-flag. Because the main task can be split into different
parts, the current part id is also saved. Every trial/silhouette has a certain trial type which is saved as
well as the silhouette itself in a stringyfied version (more on this later).

action

Whenever the participant clicks on a building block button, an action is saved to the database.

1 action_id INT

2 tnal INT

3 building_block TEXT

4 reaction_time DOUBLE
5 selected INT

It contains the current trial id and the id of the building block that was clicked. The reaction time
shows the time in seconds that has passed since the last click or in case of the first click since the
start of the trial. Because the participant can deselect a selected building_block by clicking the button
again, it is saved as a Boolean flag whether the block was selected or deselected.

Silhouette

This table contains the silhouettes that are displayed in the grid for every trial.

Name Datentyp
1 silhouette_id INT

2 solution TEXT

3 trial_type INT

4 stimset TEXT

One silhouette consists of multiple building blocks, where each block has an id and a location on the
grid. A record in this table looks like this:

silhouette_id solution trial_type stimset

0 [{"x":3, "y"4, "id":0}{"x":5, "y":2, "id":1}{"x":2, "y":5, “id":2},{"x":5, "y":4, "id":4}] 0 HierarchiesStimSet2

The column solution is a stringyfied list of json object. Each object is one building block and has the
three properties id, x and y. This string contains all the necessary information to render a silhouette
to the grid. Beside that every silhouette has type which is also saved here.

It is possible to use multiple sets of silhouettes and change between them by setting the name of the
stimuli set in the config (see Chapter 3). The Table contains all silhouettes from all stimsets, but
according to what is set in the config, only the silhouettes from one specific stimset are loaded and
used for the current experiment.

The silhouettes are not directly saved to the databased but are generated as csv-files containing one
silhouette per row. This is also the case for other data for example the stimuli for the debriefing task
or the minesweeper task. To save all those data to the database there is a python script called
update_databases.py in the root directory of the repository. So whenever there are new stimuli that
should be used in the experiment, the according csv files have to be saved in the repository under
tangram/Stims to the according place in the folder structure. Then connect to the server, pull the
repository and run the python script with

Python update_databases.py

This will automatically overwrite all database tables with the current stimuli in the Stims directory.

6 Server infrastructure

In the following a tutorial is provided how to install, configure and use the Apache webserver as it
was done for this project. The tutorial will has a slightly different style than the rest of this
documentation since it was copied over from a separate tutorial file which was created earlier.

Install node js

https://www.geeksforgeeks.org/installation-of-node-js-on-linux/

sudo apt install nodejs

sudo apt install npm

Install and configure Apache

$ sudo apt update

$ sudo apt install apache2

$ sudo ufw allow 'Apache’

Under http://your _ip you should get the following:

@ Apache2 Ubuntu Default Page

%_

This is the default welcome page used to lest the correct operation of the Apache2 server after installation on Ubuntu
systems. It is based on the equivalent page on Debian, from which the Ubuntu Apache packaging is derived. If you can
read this page, it means that the Apache HTTP server installed at this site is working properly. You should replace this
file (located at /var/www/html/index.html) before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means that the site is
currently unavailable due te maintenance. If the problem persists, please contact the site's administrator.
T

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split into several files
optimized for interaction with Ubuntu tools. The configuration system is fully documented in
lusrishareldociapache2/README.Debian.gz. Refer (o this for the full documentation. Documentation for the web
server itself can be found by accessing the manual if the apache2 - doc package was installed on this server.

The configuration layout for an Apache2 web server installation on Ubuntu systems is as follows:

/etc/apache2/
|-- apache2.conf

X ports.conf
|-- mods-enabled
| |-- *.load
| te- * conf
|-- conf-enabled
| ¢

® ,ant

Config for the webserver:

Under /etc/apache2/sites-available/000-default.conf

- Set Document root to the directory where the frontend application lies. Fore example:

- Add the following lines to ensure that your java script files are loaded correctly. For
example if your java script code is under /var/www/html/tangram/frontend/js then add the
following lines:

If the java script is still not loaded correctly, write the same lines to /etc/apache2/conf-
enabled/javascript-common.conf

- Create a new config file, for example CUSTOM.conf under /etc/apache2/conf-enabled and
add the following line:

ProxyPass /node http:

Now all http requests with the prefix /node are redirected to port 3000.

This is where your node js application is running. If you started the node js application with
another port, just change 3000 accordingly. You can also you a different prefix than /node for
example “/backend” or something else..

Install nest js

Use npm to install nestjs and use the “nest new” command to create a new nest js application:

$ npm i -g @nestjs/cli

$ nest new project-name

Start your application with npm start

Your server is now available under the port you set in the main.js (3000 by default)

See documentation under https://docs.nestjs.com/

For local development, if you get a CORS error (Cross origin resource sharing) make sure you add
the following line in your main.js

bootstrap() {
app = await NestFactory.create(AppModule);
app .enableCors();

I

bootstrap();

Install MySQL

% sudo apt update

$ sudo apt install mysgl-server

$ sudo mysql secure_installation

Create a user and set credentials by following this tutorial:

https://www.digitalocean.com/community/tutorials/how-to-install-mysgl-on-ubuntu-20-04-de

Connecting Database to NodelS Backend:

If you see the following error when trying to access the database in your node js application:

“Client does not support authentication protocol requested by server; consider upgrading MySQL
client”

Solution:

https://stackoverflow.com/questions/50093144/mysql-8-0-client-does-not-support-authentication-
protocol-requested-by-server

Execute the following query in MYSQL Workbench
) ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'password’;
Where root as your user localhest as your URL and password as your password
Then run this query to refresh privileges:
flush privileges;
Try connecting using node after you do so.

If that doesn't work, try it without @'1localhost’ part.

Some Advice

- Install git on the server, develop the application locally and then pull your project on the
server via git. Then set the document root of the Apache server to the directory where you
pulled your application (or in the directory where your frontend code / index.html is
located). If you have to change something, change the code locally, push and pull on the
server and your changes are online immediately

- If some changes to the frontend code are not visible, clear your browser cash or reload the
website with SHIFT + F5 to reload without cache

- If some changes to the backend code are not working but you don’t get any errors, try to
restart your nodejs application

- If you want your node js application to run in the background, even if you are not connected
to the server anymore, try the forevery package:
https://www.npmjs.com/package/forever
o start (you have to be in the directory of your node js app): forever start dist/main.js
o Get all running instances: forever list
o Stop a process: forever stop 0 (Replace 0 by the ID of the forever job you want to
stop)

